123 research outputs found

    Multi-scale uncertainty quantification in geostatistical seismic inversion

    Full text link
    Geostatistical seismic inversion is commonly used to infer the spatial distribution of the subsurface petro-elastic properties by perturbing the model parameter space through iterative stochastic sequential simulations/co-simulations. The spatial uncertainty of the inferred petro-elastic properties is represented with the updated a posteriori variance from an ensemble of the simulated realizations. Within this setting, the large-scale geological (metaparameters) used to generate the petro-elastic realizations, such as the spatial correlation model and the global a priori distribution of the properties of interest, are assumed to be known and stationary for the entire inversion domain. This assumption leads to underestimation of the uncertainty associated with the inverted models. We propose a practical framework to quantify uncertainty of the large-scale geological parameters in seismic inversion. The framework couples geostatistical seismic inversion with a stochastic adaptive sampling and Bayesian inference of the metaparameters to provide a more accurate and realistic prediction of uncertainty not restricted by heavy assumptions on large-scale geological parameters. The proposed framework is illustrated with both synthetic and real case studies. The results show the ability retrieve more reliable acoustic impedance models with a more adequate uncertainty spread when compared with conventional geostatistical seismic inversion techniques. The proposed approach separately account for geological uncertainty at large-scale (metaparameters) and local scale (trace-by-trace inversion)

    Improving Subsurface Characterisation with ‘Big Data’ Mining and Machine Learning

    Get PDF
    Funding: This research was supported by Wood Mackenzie through funding of a Postdoctoral Research Associate position at Heriot Watt University, and through access to data from two basins. Acknowledgments: This work was supported by Wood Mackenzie through funding research collab- oration with Heriot-Watt University. All the data were anonymised and supplied by Wood Mackenzie and authors are thankful for the opportunity to publish the outcomes of this research. Authors also thank Mikhail Kanevski of University of Lausanne for the peer exchange on feature selection and the opportunities opened during his course on Machine Learning hands-on applications. Authors acknowledge the use of Orange Data Mining [27] and ML Office for SOM application [30]. We thank Susan Agar, who reviewed the paper most comprehensively and helped improve it along with two anonymous reviewers.Peer reviewedPublisher PD

    Centar društvenih aktivnosti - Okrug Gornji : diplomski rad

    Get PDF
    Centar društvenih aktivnosti projektiran je u Okrugu Gornjem na otoku Čiovu, na mjestu sadašnje Lučice. U centru se isprepleću sadržaji društvenog centra, ugostiteljski sadržaji te sadržaji potrebni za funkcioniranje marin
    corecore